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Abstract
We consider the two-matrix model with potentials whose derivatives are
arbitrary rational functions of fixed pole structure and the support of the
spectra of the matrices are union of intervals (hard edges). We derive an
explicit formula for the planar limit of the free energy and we derive a calculus
which allows us to compute derivatives of arbitrarily high order by extending
classical Rauch’s variational formulae. The four-point correlation functions
are explicitly worked out. The formalism extends naturally to the computation
of residue formulae for the tau function of the so-called universal Whitham
hierarchy studied mainly by I Krichever: our setting extends the moduli space
in that there are certain extra data.

PACS numbers: 02.10.Yn, 02.30.Hq

1. Introduction

The two-matrix model has recently been investigated from both the point of view of its
asymptotic behaviour for large sizes of the matrices [1, 2, 17–19], and in view of the very rich
connections to integrable systems (2-Toda lattice) and biorthogonal polynomials [3–5, 27].

We briefly recall that the model consists of pairs of Hermitian matrices of size N with an
(unnormalized) probability density of the form

dµ(M1,M2) = dM1 dM2 exp

[
−1

h̄
Tr (V1(M1) + V2(M2) − M1M2)

]
, (1.1)

ZN(V1, V2, t) :=
∫

dµ, t := Nh̄. (1.2)
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In most literature the functions V1, V2 (called potentials) are required to be polynomials (if
convergence is an issue) or the formal Taylor series if only formal aspects are considered.

The function (or functional) ZN(V1, V2), called partition function, is one of the foci
of interest in modern applications. For fixed N, it is related to the Miwa–Jimbo–Ueno
isomonodromic tau function of a certain ODE ([5] for polynomial potentials, or [4] for the
similar connection in the case of the one-matrix model). Its logarithm FN := 1

N2 lnZN ,
referred to as free energy, has particular importance in the N → ∞ regime: indeed a formal
manipulation of the integral shows that it admits an expansion in inverse square powers of N
and that each term in the expansion is a generating function for the numbers of polyvalent
ribbon graphs on topological surfaces (we refer to [10, 14] which contain a comprehensive
bibliography).

The present paper deals with the leading term in this expansion

F(V1, V2, t) := lim
N→∞

1

N2
lnZN, (1.3)

where t = Nh̄ is kept fixed in the limit process.
This limit, whose existence is a working assumption, is called the planar limit in the

physical literature because it is related to the enumeration of ‘planar’ polyvalent ribbon graphs
(i.e., graphs that can be drawn on a genus zero surface, namely the (compactified) complex
plane).

Such a model in the planar limit was considered in [8] in the 1990s to explain the
connection of multicritical regimes and rational (p, q) matter fields [12].

The setting of the present paper is in the spirit of our previous papers [1, 2], where the
planar limit of the two-matrix model was considered for polynomial potentials and in an
algebro-geometric setting which is, in principle, independent of the physical assumptions.
Here we generalize completely that setting to the case of potentials whose derivative is an
arbitrary rational function: formally the model is well defined for arbitrary potentials with
complex coefficients, provided that we constrain the spectrum to belong to certain contours in
the complex plane along the lines explained in [5, 4]. In this case, however, the matrices Mi

are no longer Hermitian, but only normal (i.e., commuting with their Hermitian adjoint).
If we insist on a bona fide Hermitian model we should impose that Vi are real functions,

bounded from below on the real axis.
In addition to these data, we impose that the spectrum contains segments with extrema

{Xi} for the first matrix and {Yj } for the second matrix (hard edges of the spectra): in the case
of Hermitian matrices we would be restricting the support of the spectra to some arbitrary
union of intervals, for example

ZN(V1, V2, J,K) :=
∫
H(J)

dM1

∫
H(K)

dM2 exp

(
−1

h̄
Tr(V1(M1) + V2(M2)− M1M2)

)
. (1.4)

Here H(J) and H(K) stand for the sets of Hermitian matrices whose eigenvalues are in J

(K respectively), assumed to be a finite union of intervals. The potentials Vi have rational
derivative with poles outside of the supports of the spectra. The partition function becomes
thus a function not only of the potentials, but also of the hard edges, namely the endpoints of
the multi-intervals J,K.

Some aspects of this model have been analysed in two papers [18] and [4] from two
opposite points of view: in [18] were derived the formal properties of the spectral curve and
the loop equations in the large N limit, whereas in [4] were considered the properties of the
associated biorthogonal polynomials and the differentials equations they satisfy for finite N,
together with the certain Riemann–Hilbert data.
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For polynomial potentials, the approach using the loop equations (reparametrization
invariance) have yielded spectacular results [9, 15, 16] in the study of the formal aspects of
the 1

N2 expansion. The loop equations show that in the planar limit the resolvents of one of
the two matrices

W(x) = lim
N→∞

1

N

〈
1

x − M1

〉
, W̃ (y) = lim

N→∞
1

N

〈
1

y − M2

〉
(1.5)

satisfy an algebraic equation if we replace y = Y (x) := W(x)−V ′
1(x). This means that there

is a rational expression that defines a (singular) curve in � ↪→ P
1 × P

1—hereby referred to
as spectral curve

E(x, y) = 0 (1.6)

and that the cuts of the branched covers x : � → P
1 and y : � → P

1 describe the support of
the asymptotic density of eigenvalues, and the jumps across these cuts describe the densities
themselves.

From the finite N analysis, the spectral curve [5] arises naturally in conjunction with
the ODE satisfied by the associated biorthogonal polynomials; indeed any s2 consecutive
biorthogonal polynomials (where s2 is the total degree of the rational function V ′

2(y)) satisfy
an (s2 + 1) system of first-order ODEs, namely an equation of the form

∂x�N(x) = DN(x)�N (1.7)

and the spectral curve is nothing, but EN(x, y) = det(y1−DN(x)) = 0. While clearly certain
properties are valid only for finite N or in the infinite limit, certain other properties can be
read off both regimes: for instance, it can be seen [4] that at the hard edges the matrix DN(x)

has simple poles with nilpotent rank-one residue. This implies certain local structure of the
spectral curve y(x) above these points.

In an algebro-geometric approach, the functions x, y themselves are meromorphic
functions on the spectral curve � with specified pole structure and specified singular part
near the poles. The loop equations also provide a first-order overdetermined set of compatible
equations for the free energy; these however are not sufficient to uniquely determine the
partition function because the polar data of the functions x, y need to be supplemented by
extra parameters. This is a purely algebro-geometric consideration, but they also can be
heuristically justified along the lines of [7]. It turns out that the extra unspecified parameters
can be taken as the contour integrals

εγ :=
∮

γ

y dx, (1.8)

over a maximal set of ‘independent’ non-intersecting contours. The reader with some
background in algebraic geometry will recognize that there are g = genus(�) such contours1.
These parameters are often called ‘filling fractions’ and in principle they be should uniquely
determined by the potentials; the loop equations cannot determine the filling fraction, but
can determine the variations of the free energy with respect to them. This way one obtains
an extended set of (still compatible) PDEs for F in terms of the full moduli of the algebro-
geometric problem: we call this function the non-equilibrium free energy. In this situation
one can actually integrate the PDEs and provide a formula for the planar limit, F .

Note that the actual free energy of the model is obtained by expressing the filling fraction
implicitly as functions of the potentials via the equations

∂εj
F(V1, V2, t, ε) ≡ 0. (1.9)

1 More appropriately one should consider only the imaginary parts of these integrals over the full homology of the
curve.
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Implicit solution yields ε = ε(V1, V2, t); the resulting function

G(V1, V2, t) := F(V1, V2, t, ε(V1, V2, t)), (1.10)

will be called the equilibrium free energy. The distinction is important when computing the
higher-order derivatives of G, inasmuch as they differ by the higher-order derivatives of F by
virtue of the chain-rule; indeed while

δG
δV1(x)

= δF
δV1(x)

∣∣∣∣
ε=ε(V1,V2,t)

, (1.11)

(since ∂εj
F = 0) for the second and higher variations the equations do differ, for example

δ2G
δV1(x)δV1(x ′)

=
 δ2F

δV1(x)δV1(x ′)
+

g∑
j=1

δ∂εj
F

δV1(x)

δεj

δV1(x)

∣∣∣∣∣∣
ε=ε(V1,V2,t)

. (1.12)

We will provide simple formulae for both G,F .

1.1. Connection with the normal matrix model

Although the matrices M1,M2 we consider are normal (with spectrum on contours in the
complex plane), the denomination of the ‘normal matrix model’ is traditionally referred to
a slightly different, but not a unrelated model. Indeed one then considers the set of normal
complex matrices M and the partition function

Z(NM)
N :=

∫
N

dM ∧ dM† exp

(
−1

h̄
(Tr �(V (M)) + Tr MM†)

)
, (1.13)

where N denotes here the space of all complex normal matrices. On a formal level, the
Hermitian two-matrix model and the normal matrix model are almost indistinguishable in the
large N limit, the latter being a real section of the former.

This is particularly evident in the eigenvalue representation of the partition function

Z(NM)
N ∝

∫
C

N

|�(z)|2 exp

(
−1

h̄

(
N∑

i=1

�(V (zi)) + |zi |2
))∏

d2zi (1.14)

compared to the eigenvalue representation of the two-matrix model’s case

ZN ∝
∫

R
N

∫
R

N

�(x)�(y) exp

(
−1

h̄

(
N∑

i=1

V1(xi) + V2(yi) + xi yi

))∏
dxi dyi, (1.15)

where � denotes the Vandermonde determinant of the given eigenvalues. If we set V2 = V 1

and yi = xi and proceed with formal manipulations, the two integrals become the same2. (This
situation has been extensively analysed in [21], where the general structure of the spectral
curve is studied in both the two-matrix model and the normal matrix model.)

In the large N limit, the partition function of the normal matrix model tends to the ‘tau
function’ of a domain of the complex plane [21, 24] and the deformations of the potential
V are identified with the external harmonic moments of the domain [31]. The infinitesimal
deformations with respect to these harmonic moments entail connections with the universal
Whitham hierarchy [26] as explained in [30].

In this limit the connection between the planar free energy and the above-mentioned tau
function of domains is even more stringent. As explained in [1, 2] the spectral curve of the

2 Of course, the convergence of the integral is valid in different regions of the space of potentials, which makes the
manipulation at best an expression of some analytic continuation.



Two-matrix model with semiclassical potentials and extended Whitham hierarchy 8827

two-matrix model reduces to a Shottky-double under certain reality conditions; specifically
if the spectral curve has an antiholomorphic involution fixing a maximal number (g + 1)

of closed curves (a Harnack-M curve [20]). This real section of the moduli space of the
two-matrix-model curves includes the case of simply and multiply connected domains for the
normal matrix model.

1.2. Outline of the paper

The main approach of this paper is similar to [1, 2, 19]: namely in section 2 we ascertain the
relevant algebro-geometric data in a convenient abstract formulation of the moduli space of
spectral data for matrix models. We also recall the definition and properties of the Bergman
kernel (section 2.1), which plays an essential role in the paper.

In section 3, we integrate the differential equations determining the planar limit of the free
energy: this part gives a much more direct computation compared to [1] and also accounts for
the new moduli of the problem (the other poles of the potentials and the hard edges).

We also explain, using mainly the ideas introduced in [2], how to evaluate the ‘observables’
(partial derivatives) of the free energy up to order 3 in terms of residues involving the Bergman
kernel.

In section 4, we develop the formalism for the ‘calculus’ that allows us to compute
arbitrarily high-order partial derivatives; we recall that the derivatives of F represent higher-
order correlators of the spectral invariants of the model in this planar limit and also, the
coefficients of their expansion in the parameters of the potentials can be related to enumerative
problems of polyvalent fat graph on the sphere. This calculus relies on an extension of Rauch’s
variational formulae to higher-order variations (usual Rauch’s formulae are used to describe
first-order variations of the matrix of periods).

In the appendices we report details on the definition of the regularized integrals
(appendices A and D) used in the expression of the free energy.

In appendix B we exemplify our moduli space to the case of genus zero curves (usually
referred to as the ‘one-cut’ case, since the support of the spectral densities is a single interval).
Moreover, we dwell slightly more on the relationships to the tau function of conformal maps
(in this case for simply-connected domains).

Appendix C develops the theory beyond the case of importance to matrix models: in this
generalization the spectral functions are replaced by meromorphic differentials much in the
spirit of [26] and Seiberg–Witten models. The calculus for higher-order variations is then
applied to this new extended Whitham hierarchy, providing new residue formulae.

2. Setting and notation

The moduli space of our data is an extension of that in [1]3. It consists of a (smooth) curve �g

of the genus g with 2 + K + L distinct-marked points ∞X, p1, . . . , pK , ∞Y, q1, . . . , qL and
two functions X and Y with the following pole structure.

(1) The function X has the following divisor of poles:

(X)− = ∞X + d2,∞∞Y +
H1∑

α=1

(d2,α + 1)pα +
K1∑

=1

η
. (2.1)

3 The functions that there were denoted by P, Q are here denoted by Y, X.



8828 M Bertola

(2) The function Y has the following divisor of poles:

(Y)− = ∞Y + d1,∞∞X +
H2∑

α=1

(d1,α + 1)qα +
K2∑

=1

ξ
. (2.2)

(3) The differential dX vanishes (simply) at the (non-marked) points {ξ
} and vice versa the
differential dY vanishes (simply) at the points {η
}.
All the points entering the above formulae are assumed to be pairwise distinct. The points

of the pole divisors which are not marked (the ξ
, η
) will be called hard edge. As hinted at
in the introduction, these requirements follow from either the loop equations [18] or the exact
form of the spectral curve [4]: the points Qα := X(qα) and Xj := X(ξj ) are the positions
of the poles of the derivatives of the potential V ′

1(X) and the hard edges in the X-plane (and
conversely for Y): the fact that the ODE for the biorthogonal polynomials has simple poles
with nilpotent, rank-1 residue at the points Xj, j = 1, . . . , implies that the differential dX
vanishes at one of the points above Xj , at which the eigenvalue Y has a simple pole.

Under these assumptions we can write the following asymptotic expansions:

Y =



Y =
√

−2Rj

X − Xj

+ O(1) near ξj , (here Xj := X(ξj ))

−
d1,α∑
K=0

uK,α

(X − Qα)K+1
+ O(1) near pj , (here Qα := X(qα))

d1,∞+1∑
K=1

uK,∞XK−1 − t +
∑

α u0,α

X
+ O(X−2) near ∞X

X =



X =
√

−2Sj

Y − Yj

+ O(1) near ηj , (here Yj := Y(ηj ))

−
d2,α∑
J=0

vJ,α

(Y − Pα)J+1
+ O(1) near pα, (here Pα := Y(pα))

d2,∞+1∑
J=1

vJ,∞YJ−1 − t +
∑

α v0,α

Y
+ O(Y−2) near ∞Y.

(2.3)

The above asymptotics imply immediately that there exist two rational functions which we
denote by V ′

1 and V ′
2, such that(

Y − V ′
1(X) +

t

X

)
dX,

(
X − V ′

2(Y) +
t

Y

)
dY (2.4)

are holomorphic differentials in the vicinity of the points {∞X, qα, α � 1} and
{∞Y, pα, α � 1}, respectively. For later reference, we spell out these functions as

V1(x) := V1,∞(x) +
∑

α

(V1,α(x) − u0,α ln(x − Qα))

V1,∞(x) :=
d1+1∑
K=1

uK,∞
K

xK, V1,α(x) :=
d1,α∑
K=1

uK,α

K(x − Qα)K

(2.5)

V2(y) := V2,∞(y) +
∑

α

(V2,α(y) − v0,α ln(y − Pα))

V2,∞(y) :=
d2+1∑
J=1

vJ,∞
J

yJ , V2,α(y) :=
d2,α∑
J=1

vJ,α

J (y − Pα)J
.

(2.6)
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A local set of coordinates for the moduli space of these data is provided by the coefficients
{uK,α, vJ,α, t : α = ∞, 1, 2, . . .}, the position of the poles {Qα,Pα}α=1,..., the position of the
hard-edge divisors {Xj, Yj } together with the so-called filling fractions

εj :=
∮

aj

Y dX. (2.7)

2.1. Bergman kernel

We recall the definition of the Bergman kernel4 a classical object in complex geometry which
can be represented in terms of prime forms and theta functions. In fact we will not need any
such sophistication because we are going to use only its fundamental properties (that uniquely
determine it).

Let {ai, bi}i=1...g be a choice of symplectic basis in the homology of the surface �g (which
means that ai intersects only bi at one point and with positive relative orientation with respect
to the natural orientation of the surface �g). The Bergman kernel 
(ζ, ζ ′) (where ζ, ζ ′ denote
here and in the following abstract points on the curve) is a bidifferential on �g ×�g (depending
on the fixed choice of homology basis) with the properties

Symmetry: 
(ζ, ζ ′) = 
(ζ ′, ζ ) (2.8)

Normalization:
∮

ζ ′∈aj


(ζ, ζ ′) = 0 (2.9)

∮
ζ ′∈bj


(ζ, ζ ′) = 2iπωj (ζ ) = the holomorphic normalized Abelian differential. (2.10)

It is holomorphic everywhere on �g × �g\�, and it has a double pole on the diagonal
� := {ζ = ζ ′}: namely, if z(ζ ) is any coordinate, we have


(ζ, ζ ′) 	
ζ∼ζ ′

[
1

(z(ζ ) − z(ζ ′))2
+

1

6
SB(ζ ) + O(z(ζ ) − z(ζ ′))

]
dz(ζ ) dz(ζ ′), (2.11)

where the very important quantity SB(ζ ) is the ‘Bergman projective connection’ (it transforms
like the Schwartzian derivative under changes of coordinates).

It follows also from the general theory that any normalized Abelian differential of the
third kind with simple poles at two points z− and z+ with residues, respectively, ±1 is obtained
from the Bergman kernel as

dSz+,z−(ζ ) =
∫ z+

ζ ′=z−

(ζ, ζ ′). (2.12)

For later purposes, we introduce the dual Bergman kernel defined by


̃(ζ, ζ ′) := 
(ζ, ζ ′) − 2π i
g∑

j,k=1

ωj(ζ )ωk(ζ
′)(B−1)jk, (2.13)

where B is the matrix of b-periods

Bij = Bji =
∮

bj

ωi. (2.14)

In fact 
̃ is conceptually no different from 
, being just normalized so that
∮
bj


̃ ≡ 0. We
keep the distinction only for later practical purposes.

4 Our use of the term ‘Bergman kernel’ is slightly unconventional, since more commonly the Bergman kernel is a
reproducing kernel in the L2 space of holomorphic one-forms. The kernel that we name here ‘Bergman’ is sometimes
referred to as the ‘fundamental symmetric bidifferential’. We borrow the (ab)use of the name ‘Bergman’ from [22].
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2.1.1. Prime form. For the sake of completeness, we recall here the definition of the prime
form E(ζ, ζ ′).

Definition 2.1. The prime form E(ζ, ζ ′) is (−1/2,−1/2) bidifferential on �g × �g

E(ζ, ζ ′) =
�
[

α

β

]
(u(ζ ) − u(ζ ′))

h[ α

β
](ζ )h[ α

β
](ζ

′)
(2.15)

h[ α

β
](ζ )2 :=

g∑
k=1

∂uk
ln �

[
α

β

] ∣∣∣∣
u=0

ωk(ζ ), (2.16)

where ωk are the normalized Abelian holomorphic differentials, u is the corresponding Abel

map and
[
α

β

]
is a half-integer odd characteristic (the prime form does not depend on which

one).

Then the relation with the Bergman kernel is as follows:


(ζ, ζ ′) = dζ dζ ′ ln E(ζ, ζ ′) =
g∑

k,j=1

∂uk
∂uj

ln �

[
α

β

] ∣∣∣∣
u(ζ )−u(ζ ′)

ωk(ζ )ωj (ζ
′). (2.17)

Remark 2.1. In genus zero, of course, there are no theta functions: however, there is a
Bergman kernel with the same properties, given simply by (using the standard coordinate on
the complex plane)


(z, z′) = dz dz′

(z − z′)2
. (2.18)

3. Planar limit of the free energy

The planar limit of the free energy is defined by the following set of compatible equations:

∂uK,0F = UK,0 := − 1

K
res∞X

XKY dX ∂vJ,0F = VJ,0 := − 1

J
res∞Y

YJ X dY

∂uK,α
F = UK,α := − 1

K
res
qα

1

(X − Qα)K
Y dX ∂vJ,α

F = VK,α := − 1

J
res
pα

1

(Y − Pα)J
X dY

∂u0,α
F = U0,α := −−

∫ ∞X

qα

Y dX ∂v0,α
F = V0,α := −−

∫ ∞Y

pα

X dY

∂Xj
F = Rj := 1

2
res
ξj

Y2 dX ∂Yj
F = Sj := 1

2
res
ηj

X2 dY

∂Qα
F = res

qα

(
V ′

1,α(X) − u0,α

(X − Qα)

)
Y dX ∂Pα

F = res
pα

(
V ′

2,α(Y) − v0,α

(Y − Pα)

)
X dY

[−1pt]∂tF = µ := −−
∫ ∞X

∞Y

Y dX −
∑
α�1

v0,α = −−
∫ ∞Y

∞X

X dY −
∑
α�1

u0,α

∂εj
F = �j := 1

2iπ

∮
bj

Y dX. (3.1)

In these formulae the symbol −−∫ stands for the regularized integral obtained by subtraction of
the singular part in the local parameter as follows:

(i) at ∞X(∞Y) the local parameter is z = X−1( z̃ = Y−1);
(ii) at qα(pα) the local parameter is zα = X − Qα (zα̃ = Y − Pα).
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The regularization is then defined as follows: if z is any of the above local parameters
then

−−
∫ 0

ω := lim
ε→0

∫ ε

ω − f (ε), (3.2)

where f (z) is defined as the antiderivative (without constant) of the singular part of ω
dz

as a
function of z (near z = 0).

Example 3.1. The regularized integral according to the definition is

−−
∫ qα

∞X

Y dX := lim
ε→qα

lim
R→∞X

∫ ε

R

Y dX + V1,∞(X(R)) −
(

t −
∑

α

u0,α

)
ln(X(R)) − V1,α(X(ε)).

(3.3)

The two expressions for µ in (3.1) are proven to be equivalent (thus showing the symmetry
in the roles of X and Y) by integration by parts, paying attention at the definition of the
regularization (which involves as local parameters X−1 and Y−1 at the two different poles);
indeed we have

−−
∫ ∞X

p

Y dX = lim
ε→∞X

(∫ ε

p

Y dX − V1,∞(X(ε)) +

(
t +
∑

α

u0,α

)
ln X(ε)

)
(3.4)

= lim
ε→∞X

(
−
∫ ε

p

X dY + X(ε)

V ′
1∞(X)−X−1(t+

∑
u0,α )+...

||
Y(ε)−X(p)Y(p) + V1,∞(X(ε))

+

(
t +
∑

α

u0,α

)
ln X(ε)

)
(3.5)

= − −−
∫ ∞X

p

X dY − X(p)Y(p) −
(

t +
∑

α

u0,α

)
(3.6)

together with a similar formula for the symmetric expression

−−
∫ p

∞Y

Y dX = X(p)Y(p) +

t +
∑

β

v0,β

− −−
∫ p

∞Y

X dY. (3.7)

Combining the two, one has

µ = −−
∫ ∞X

∞Y

Y dX −
∑

β

v0,β = −−
∫ ∞Y

∞X

X dY −
∑

α

u0,α. (3.8)

In full generality, given any meromorphic differential and local parameters around its
poles, one can give completely explicit formulae for its regularized integrals (see appendix D).
In our specific setting we give explicit formulae of the previous regularized integrals in terms
of canonical differentials of the third kind in appendix A.

We also make the important remark that in order for the above formulae to make sense, we
must perform some surgery on the surface by cutting it along a choice of the a, b-cycles and
by performing some mutually non-intersecting cuts between the poles with nonzero residues
of the differential Y dX (see figure 1). We achieve this goal by choosing some segments on
the surface joining the chosen basepoint for the canonical dissection to ∞X and ∞Y, and
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Figure 1. A visualization of an example of the dissection mentioned in the text for a genus-2
curve.

then segments connecting ∞X to qα and ∞Y to pα . The result of this dissection is a simply-
connected domain where X, Y are meromorphic functions and where the regularizations
involving logarithms are defined by taking the principal determination.

The compatibility of equations (3.1) for F can be shown by taking the cross-derivatives.
We now briefly recall, for the reader’s sake, how to compute them since much of the formalism
is needed in the following. The main tool is the previously defined Bergman kernel (section 2.1)
providing an effective way of writing formulae for first-, second- and third-kind normalized
differentials on the Riemann surface. This is needed when computing the cross derivatives
of the free energy since the differentials ∂Y dX and ∂X dY (here ∂ is any variation of the
coordinates) can be identified with certain canonical differentials.

Let us first recall the thermodynamic identity

(∂Y)X dX = −(∂X)Y dY, (3.9)

where the subscript denotes the local coordinate to be kept fixed under variation. As an
example of the use of (3.9) in identifying the various differentials, we consider a derivative
∂uK

. From the defining relations for the coordinates (2.3), we see that(
∂uK,∞Y

)
X dX =

{
XK−1 dX + O(X−2) dX near ∞X

O(1) dX near qα

(3.10)

has a pole of order K at ∞X without residue. In order what kind of singularity it has at ∞Y,
we use (3.9) followed by (2.3)(

∂uK,∞Y
)

X dX = −(∂uK
X
)

Y dY =
{
O(Y−2) dY near ∞Y

O(1) dY near pα.
(3.11)

Therefore, the differential
(
∂uK,∞Y

)
X dX has only a pole at ∞X and no residues: moreover, it

follows by differentiation of (2.7) that this differential is also normalized (i.e., with vanishing
a-cycles), which is sufficient to uniquely specify it. It is then an exercise using the properties
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of 
 to see that(
∂uK,0 Y

)
X dX = − res∞X

XK

K

. (3.12)

Following the same logic and similar reasoning, one can prove the following formulae:

First kind
(
∂εj

Y
)

X dX = ωj = 1

2iπ

∮
bj


 (3.13)

Second kind



(
∂uK,∞Y

)
X dX = − res∞X

XK

K

 =: ωK,∞(

∂uK,α
Y
)

X dX = − 1

K
res
qα

(X − Qα)−K
 =: ωK,α(
∂Xj

Y
)

X dX = res
ξj

Y
 =: ωXj(
∂Qα

Y
)

X dX = res
qα

(
V ′

1,α(X) − u0,α

(X − Qα)

)

(

∂vJ,∞Y
)

X dX = res∞Y

YJ

J

 =: ωJ̃ ,∞(

∂vJ,α
Y
)

X dX = 1

J
res
pα

(Y − Pα)−J 
 = ωJ̃ ,α(
∂Yj

Y
)

X dY = − res
ηj

X
 =: ωYj(
∂Pα

Y
)

X dX = − res
pα

(
V ′

2,α(Y) − v0,α

(Y − Pα)

)



(3.14)

Third kind



(
∂u0,α

Y
)

X dX =
∫ ∞X

qα


 =: ω0,α

(
∂v0,α

Y
)

X dX = −
∫ ∞Y

pα


 =: ω0̃,α

(∂tY)X dX =
∫ ∞X

∞Y


 =: ω0.

(3.15)

The only formulae above that need some further explanations are those for the derivatives with
respect to Xj (or similarly Yj ); from the asymptotic behaviour (2.3) in the local parameter
z = √X − Xj , we have

∂Xj
Y dX =

[(
∂Xj

Xj

)
2

√−2Rj

z3
+

∂
√−2Rj

z
+ O(1)

]
2z dz

=
√−2Rj

z2
dz + O(1) = −d

(√−2Rj

z
+ O(1)

)
= res

ξj

Y
. (3.16)

This proves that if ∂ = ∂Xj
then the differential has a double pole at ξj without residues:

similar reasoning at the other singularities and for the a-cycles of the differential force it to be
equal to the above formula in (3.14).

Remark 3.1. As explained in the introduction, we are also interested to the restriction of F to
the subvariety of the moduli space defined by

∂εj
F(V1, V2, t, ε(V1, V2, t)) ≡ 0, j = 1, . . . , g. (3.17)
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Since on this subvariety the differentials X dY, Y dX have identically vanishing b-periods, the
formulae for the constrained derivatives that substitute (3.14), (3.15)5 are the same with 
̃

(2.13) replacing 
.

Before writing the cross derivatives in a way which is symmetric in X, Y, we introduce
some useful notation: all the differentials (3.13)–(3.15) are obtained by applying a suitable
integral operator to one variable of the Bergman kernel 
 according to the following table of
translation:

∂

∂uK,∞
�→ UK,∞ := − 1

2iKπ

∮
∞X

XK ∂

∂vJ,∞
�→ VJ,∞ := 1

2iJπ

∮
∞Y

YJ

∂

∂u0,α

�→ U0,α := −−
∫ ∞X

qα

∂

∂v0,α

�→ V0,α := −−
∫ ∞Y

pα

∂

∂uK,α

�→ UK,α := − 1

2iKπ

∮
qα

1

(X − Qα)K

∂

∂vJ,α

�→ VJ,α := 1

2iJπ

∮
pα

1

(Y − Pα)J

∂

∂Xj

�→ RJ := 1

2iπ

∮
ξj

Y
∂

∂Yj

�→ SJ := − 1

2iπ

∮
ηj

X

∂

∂t
�→ T := −−

∫ ∞X

∞Y

∂

∂εj

�→ Ej := 1

2iπ

∮
bj

. (3.18)

All the differentials (3.13)–(3.15) are obtained by applying the corresponding integral operator
in (3.18) to the Bergman bidifferential 
.

In order to write the cross derivatives, let us choose two coordinates and denote by ∂1, ∂2

the corresponding derivatives and by
∫
∂1

,
∫
∂2

the corresponding integral operator as per table
(3.18): then we have

∂1∂2F = ∂1

∫
∂2

Y dX =
∫

∂2

(∂1Y)X dX =
∫

∂2

∫
∂1


. (3.19)

The important and conclusive remark now is that the order of the action of the integral operators
appearing in the list (3.18) on 
 is immaterial because the kernel 
 is symmetric and, more
importantly, because its residue on the diagonal is zero. This means that in exchanging two
integral operators one may in fact acquire the integral of a total differential which is going to
cancel either by integration or against the regularization. To illustrate the point we make two
examples.

Example 3.2. Consider two coordinates uK,α, vJ,β : then

∂uK,α
∂vJ,β

F = VJ,βUK,α
. (3.20)

In this case the two integral operators involve either residues (for K > 0) or (regularized)
integrals. Either way the contours do not intersect and the double integral is independent of
the order.

Example 3.3. Consider the derivatives ∂u0,α
and ∂uK,α

; in this case the integral operators do
involve intersecting contours, hence care must be exercised

∂u0,α
∂uK,α

F = 1

2iKπ

∮
qα

(X − Qα)−K(ζ ) −−
∫ qα

∞X


(ζ, ξ). (3.21)

5 Equations (3.13) do not make sense on the subvariety since ε are not independent coordinates any longer.
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The inner integral in fact does not need any regularization, so we have

∂u0,α
∂uK,α

F = 1

2iKπ

∮
qα

(X − Qα)−K(ζ )

∫ qα

∞X


(ζ, ξ) (3.22)

= lim
ε→qα

1

2iKπ

∫ ε

∞X

∮
qα

(X − Qα)−K(ζ )
(ζ, ξ) − 1

K
(X(ε) − Qα)−K (3.23)

= 1

2iKπ
−−
∫ qα

∞X

∮
qα

(X − Qα)−K(ζ )
(ζ, ξ) = ∂u0,α
∂uK,α

F . (3.24)

(The exchange of the order of the integrals gives a −2iπδ supported at the intersection of the
contours of integration.)

Theorem 3.1. The free energy is given by the formula (we set uK,0 := uK,∞, vJ,0 :=
vJ,∞, u0,0 = u0,∞ := v0,0 = v0,∞ := 0 for uniformity in the formulae)

2F =
∑
α=0

d1,α∑
K=0

uK,αUK,α +
∑
α=0

d2,α∑
J=0

vJ,αVJ,α + tµ +
g∑

j=1

εj�j +


1

2

∑
ζ∈DX

res
ζ

Y2X dX

1

2

∑
ζ∈DY

res
ζ

X2Y dY,

(3.25)

where

DX := {∞X, qα, ξj , α = 1, . . . ; j = 1, . . .} (3.26)

DY := {∞Y, pα, ηj , α = 1, . . . ; j = 1, . . .} (3.27)

(see definitions of the properties of the points appearing here at the beginning of section 2)6.

Proof. First of all note that the expression is symmetric in the roles of X, Y after integration
by parts and moving the residues to the other poles

1

2

∑
ζ∈DX

res
ζ

Y2X dX = −1

2

∑
ζ∈DY

res
ζ

Y2X dX = 1

2

∑
ζ∈DY

res
ζ

X2Y dY, (3.28)

where we have used that DX ∪ DY is the set of all poles of the differential Y2X dX. Now, the
proposed expression is nothing, but

2F =
∑
α=0

d1,α∑
K=0

uK,αUK,α(Y dX) −
∑
α=0

d2,α∑
J=0

vJ,αVJ,α(X dY) + tT (Y dX) (3.29)

+
g∑

j=1

εjEj (Y dX) +
1

2

∑
ζ∈DX

res
ζ

Y2X dX − t
∑

v0,α. (3.30)

Suppose we compute a derivative with respect to uR,β : using the list of differentials (3.13)–
(3.15) and moving the computation of residues over to DY, for convenience, before the
differentiation, we have

2∂uR,β
F =

=UR,β︷ ︸︸ ︷
UR,β(Y dX) +

∑
α=0

d1,α∑
K=0

uK,αUK,α(UR,β
) (3.31)

6 The set DX is the support of the pole-divisor of Y less the point ∞Y, and vice versa for DY.
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−
∑
α=0

d2,α∑
J=0

vJ,αVJ,α(−UR,β
) + tT (UR,β
) +
g∑

j=1

εjEj (UR,β
) −
∑
ζ∈DY

res
ζ

YXUR,β(
) (3.32)

= UR,β + UR,β

∑
α=0

d1,α∑
K=0

uK,αUK,α(
) +
∑
α=0

d2,α∑
J=0

vJ,αVJ,α(
)

+ tT (
) +
g∑

j=1

εjEj (
) −
∑
ζ∈DY

res
ζ

XY


 . (3.33)

Note that the operator UR,β involves residues at one of the points of DX and hence commutes
with the other residues when acting on the (singular) kernel 
 also for the last term involving
residues at DY.

From the properties of 
 and the definitions of the integral operators, it follows that the
differential acted upon by UR,β is precisely Y dX, namely

Y dX =
∑
α=0

d1,α∑
K=0

uK,αUK,α(
) +
∑
α=0

d2,α∑
J=0

vJ,αVJ,α(
)

+ tT (
) +
g∑

j=1

εjEj (
) −
∑
ζ∈DY

res
ζ

XY
. (3.34)

This can be seen by analysing the singular behaviour near the poles and the a-periods of both
sides of the equality and verifying that they are the same7. Whence we have the desired
conclusion of this part of the proof. The other derivatives are treated in completely parallel
way.

The derivatives with respect to Xj, Yj are a little different because there is no explicit
dependence of F from these coordinates. However, this produces the correct result since, for
example

2∂X

F =

∑
α=0

d1,α∑
K=0

uK,αUK,α (R

) −
∑
α=0

d2,α∑
J=0

vJ,αVJ,α (−R

) + tT (R

) (3.35)

+
g∑

j=1

εjEj (R

) −
∑
ζ∈DY

res
ζ

XYR
(
) (3.36)

= Rl(Y dX), (3.37)

which is consistent with our definitions (3.1).
As a final case, we compute the derivative with respect to Qα: here some care should be

paid to the commutation of the derivative with the integral operators. Indeed ∂Qα
does not

commute with the integral operators UK,α,K = 0, . . . , but instead we have[
∂Qα

,UK,α

] = KUK+1,α, K = 1, . . . (3.38)[
∂Qα

,U0,α

] = U1,α. (3.39)

7 One should use that the behaviour near a pole of the last term on the lhs is, e.g.∑
ζ∈DY

res
ζ

XY
 ∼
pα

−d
(
YV ′

2,α(Y)
)
.
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While (3.38) is rather obvious from the definition of the integral operator, some explanation
is necessary for (3.39). Expanding −−∫∞X

ε
Y dX in the local parameter at qα , we have

−−
∫ ∞X

ε

Y dX = −V1,α(X(ε)) + c0 + c1zα + O
(
z2
α

)
+ V1,α(X(ε)). (3.40)

Therefore, we have

∂Qα
−−
∫ ∞X

qα

Y dX = ∂Qα

(
lim

ε→qα

∫
ε

Y dX + V1,α(X(ε))

)
= ∂Qα

c0. (3.41)

Vice versa (recalling that ∂Qα
zα = −1)

−−
∫ ∞X

qα

(
∂Qα

Y
)

X dX = lim
ε→qα

∫ ∞X

ε

(
∂Qα

Y
)

X dX

= lim
ε→qα

(
∂Qα

c0 − c1 + ∂Qα
c1zα + O

(
z2
α

)) = ∂Qα
c0 − c1. (3.42)

This shows that[
∂Qα

,−−
∫

qα

]
= − 1

2iπ

∮
qα

1

X − Qα

= U1,α. (3.43)

Using this and computing the derivative of F , we obtain the desired result

∂Qα
F = res

qα

V ′
1,α(X)Y dX. (3.44)

Finally, while the reasoning is mostly similar, the t derivative has an additional technical
difficulty. First of all we have

∂t −−
∫ ∞X

∞Y

Y dX = −−
∫ ∞X

∞Y

−−
∫ ∞X

∞Y


 + 1. (3.45)

The reason of the additional +1 is the fact that the local parameters near the two poles are
different functions (here we set for brevity tX = t +

∑
u0,α, tY = t +

∑
v0,α)

∂t −−
∫ ∞X

∞Y

Y dX = lim
ε→∞Y
ρ→∞X

∂t

[ ∫ ρ

ε

Y dX − (V1,∞(X) − tX ln(X))ρ

+ (YV ′
2,∞(Y) − V2,∞(Y) − tY ln(Y))ε

]

= lim
ε→∞Y
ρ→∞X

[ ∫ ρ

ε

∫ ∞X

∞Y


 + ln(X(ρ)) − ln(Y(ε)) +

(
YV ′′

2,∞(Y) − tY

Y

) dY
Y dX +···

||
(∂tY)X

]
= −−
∫ ∞X

∞Y

−−
∫ ∞X

∞Y


 + 1. (3.46)

Moreover, whether we sum at the poles in DX or DY, we need to interchange the order of the
following residue/integral

res∞Y
XY

∫ ∞X

∞Y


 = lim
ε→∞Y

∫ ∞X

ε

res∞Y
XY
 − Y(ε)

V ′
2,∞(Y)−(t+

∑
v0,α )Y−1+···

||
X(ε)= −−

∫ ∞X

∞Y

res∞Y
XY
 + t +

∑
α

v0,α. (3.47)

Putting it all together, we find

2∂tF =
(
T (Y dX) + t −

∑
α

v0,α

)
+ T (Y dX) − t −

∑
α

v0,α = 2µ. (3.48)
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The other derivatives with respect to the moduli vJ,α, Yj , Pα are computed in a similar way
by first rewriting the expression for F equivalently in the symmetric way with respect to the
exchange of roles of X, Y. �

Corollary 3.1. The free energy satisfies the following scaling constraints:

2F = VYF +
∑

1�α<β

v0,αv0,β + t
∑
α�1

v0,α +
t2

2
(3.49)

2F = VXF +
∑

1�α<β

u0,αu0,β + t
∑
α�1

u0,α +
t2

2
(3.50)

where

VY :=
∑
α�0

∑
K�0

uK,α

∂

∂uK,α

+
d2,∞∑
J=1

(1 − J )vJ,∞
∂

∂vJ,∞
+
∑
α�1

Pα

∂

∂Pα

+
d2,α∑
J=0

(J + 1)vJ,α

∂

∂vJ,α


+
∑

j

Yj

∂

∂Yj

+ t
∂

∂t
+

g∑
j=1

εj

∂

∂εj

(3.51)

VX :=
∑
α�0

∑
J�0

vJ,α

∂

∂vJ,α

+
d1,∞∑
K=1

(1 − K)uK,∞
∂

∂uK,∞

+
∑
α�1

Qα

∂

∂Qα

+
d1,α∑
K=0

(K + 1)uK,α

∂

∂uK,α

+
∑

j

Xj

∂

∂Xj

+ t
∂

∂t
+

g∑
j=1

εj

∂

∂εj

.

Note that these formulae give other representations of the free energy in terms of its first
derivatives defined independently in (3.1). Moreover, any convex linear combination will give
another representation.

Proof. The formulae can be obtained by explicitly computing the residues of Y2X dX at the
various points or by the following straightforward argument. Consider the new functions
X̃ := X and Ỹ = ecY: the new free energy F̃ will be given by the same formula (3.25) in
terms of the new objects. Taking d

dc

∣∣
c=0 gives the first formula. Some particular care has to

be paid to the regularizations which involve subtraction of logarithms.
The second formula is obtained in a symmetric way. �

If we denote by
∫
∂

the integral operator associated with a derivative ∂ , the formulae for
the second-order derivatives are written concisely as

∂1∂2F =
∫

∂1

∫
∂2


 + δ∂1,t δ∂1,∂2 . (3.52)

In other words8 the Bergman kernel is the universal kernel for computing the second derivatives
of the free energy and hence the two-point correlation functions of the matrix model in the
planar limit.

The third-order correlation functions were computed in [2] for the case of polynomial
potentials: since the reasoning is identical we only report the result. The key ingredient there

8 We could dispose of the last term (enters only in ∂2
t F) by subtracting 1

2 t2; this would change the t-derivative
µ → µ + t making the formula for the first derivatives slightly different. Note that this does not affect the derivatives
of order 3 and higher.
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is the formula that allows you to find the variation of the Bergman kernel under infinitesimal
change of the deformation parameters. The formulae can be summarized as follows:

(∂
)X(ξ, η) = −
∫

ρ,∂

∑
k

res
ζ=xk


(ξ, ζ )
(ρ, ζ )
(η, ζ )

dY(ζ ) dX(ζ )
= −

∑
k

res
ζ=xk


(ξ, ζ )ω∂(ζ )
(η, ζ )

dY(ζ ) dX(ζ )

(∂
)Y(ξ, η) =
∫

ρ,∂

∑
k

res
ζ=yk


(ξ, ζ )
(ρ, ζ )
(η, ζ )

dY(ζ ) dX(ζ )
=
∑

k

res
ζ=yk


(ξ, ζ )ω∂(ζ )
(η, ζ )

dY(ζ ) dX(ζ )
,

(3.53)

where xk and yk denote, respectively, all the critical points of X and Y other than ∞Y,∞X

(namely dX(xk) = 0, dY(yj ) = 0). These formulae follow from the Rauch variational formula
[29, 22]. Note that dY dX in the denominator has simple poles at the ξj , ηj ; hence the residues
at these points do not contribute to the sum except for the cases where ω∂ has a (double) pole
at one of those points, namely only for the cases ∂ = ∂Xj

, ∂Yj
.

The final formulae for the third derivatives are simpler if we introduce the two kernels



(3)
X (ζ1, ζ2, ζ3) := −

∑
k

res
ζ=xk


(ζ1, ζ )
(ζ2, ζ )
(ζ3, ζ )

dY(ζ ) dX(ζ )
(3.54)



(3)
Y (ζ1, ζ2, ζ3) :=

∑
k

res
ζ=yk


(ζ1, ζ )
(ζ2, ζ )
(ζ3, ζ )

dY(ζ ) dX(ζ )
. (3.55)

This way one obtains

∂uK,α
∂uJ,β

∂F =
∫

∂

UK,αUJ,β

(3)
X , ∂vK,α

∂vJ,β
∂F =

∫
∂

VK,αVJ,β

(3)
Y (3.56)

∂uK,α
∂t ∂tF = UK,αT T 


(3)
X , ∂vJ,α

∂t ∂tF = VJ,αT T 

(3)
Y . (3.57)

For all other third-order derivatives, one can use either kernels

∂1∂2∂3F =
∫

∂1

∫
∂2

∫
∂3



(3)
Y =

∫
∂1

∫
∂2

∫
∂3



(3)
X . (3.58)

It should be clear to the reader that these formulae translate to residue formulae in the spirit
of [26, 13]. For example,

∂εj
∂εk

∂ε

F = −

∑
k

res
ζ=xk

ωjωkω


dY dX
=
∑

k

res
ζ=yk

ωjωkω


dY dX
. (3.59)

Remark 3.2. There are some superficial similarities between the free energy and the tau
function of the Whitham hierarchy defined in [26]: the moduli space over which the free
energy is defined indeed can be embedded as a submanifold of the moduli space considered
in [26]. Nonetheless, the coordinates that are relevant to the matrix model applications are of
a different nature as those introduced by Krichever. Resultingly the free energy it is not the
same function: this distinction is particularly relevant in the computations of observables (i.e.,
derivatives) of higher order.

4. Residue formulae for higher derivatives: extended Rauch variational formulae

It is clear from the previous review of the material that in order to compute any further variation
we must be able to find the variation of the kernels 


(3)
Y and 


(3)
X : this step will produce three

kernels



(4)
YY, 


(4)
YX, 


(4)
XX, (4.1)
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according to which variable Y or X we keep fixed under the new variation. The reason of this
plethora is essentially that the variations of the basic differentials

∫
∂

 are performed more

easily either at Y or X fixed: for instance, if we compute the variation of ωK = UK(
) at X
fixed, we obtain

(∂ωK,∞)X(ξ) = res∞X

XK

K
(∂
)X = −

∑
k

res
ζ=xk

ωK(ζ )ω∂(ζ )
(ξ, ζ )

dY(ζ ) dX(ζ )
(4.2)

whereas

(∂ωK,∞)Y = res∞X

(
XK−1(∂X)Y
 +

XK

K
(∂
)Y

)
. (4.3)

This is in fact a manifestation of the thermodynamic identity for differentials.

Lemma 4.1. The variation of a differential at Y and X fixed are related by the following
formula:

(∂ω)Y = (∂ω)X + d
( ω

dX
(∂X)Y

)
= (∂ω)X − d

( ωω∂

dX dY

)
. (4.4)

Proof. Writing ω = f dY = g dX, we have

(∂ω)Y =
[
(∂g)X +

dg

dX
(∂X)Y

]
dX + gd(∂X)Y = (∂ω)X + d(g(∂X)Y). (4.5)

Since g = ω/dX and (∂X)Y = −ω∂/dY, we have the assertion. �

Using lemma 4.1 and trading the residues at the xk over to the others (at the y
, ξ,∞X)
one can check directly that formulae (4.2), (4.3) are consistent.

It should also be clear that the variation of the numerators of 

(3)
Y,X are obtained by simply

applying the product rule and the previously listed appropriate Rauch formulae. The only new
ingredient is the variation of the denominator of 


(3)
Y,X as explained below.

Suppose we want to perform a variation ∂ at X fixed of one of the two kernels; when we
need to compute the variation of the denominator, we need a formula for ∂ 1

dY . We should think
of the expression 1

dY as a meromorphic vector field on the Riemann surface and the variation
is the vector field

∂

(
1

dY

)
X

= −d((∂Y)X)

dY2
= − 1

dY2
d
(ω∂

dX

)
. (4.6)

Now, the differential of the function ω∂

dX can be expressed as a residue using, once more, the
Bergman kernel according to the following:

Lemma 4.2. Let F be a (local) meromorphic function: then the differential dF can be obtained
by

dF(ξ) = res
ζ=ξ


(ζ, ξ)F (ζ ). (4.7)

The proof is very simple using a local parameter near the point ξ and the asymptotic expansion
of the Bergman kernel.

Combining lemma 4.2 with (4.6), we have the new variational formula

∂

(
1

dY

)
X

∣∣∣∣
ξ

= − 1

dY2(ξ)
res
ζ=ξ


(ζ, ξ)
ω∂(ζ )

dX(ζ )

∂

(
1

dX

)
Y

∣∣∣∣
ξ

= 1

dX2(ξ)
res
ζ=ξ


(ζ, ξ)
ω∂(ζ )

dY(ζ )
,

(4.8)

where the different sign in the second formula is due to the fact that (∂X)Y = −ω∂/dY.
Let us summarize the rules of the calculus.
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(1) The variations of any differential can be performed at X or Y fixed, the two being related
by lemma 4.1.

(2) The variations at X-fixed of the vector fields 1/dY and vice versa are given by
equation (4.8).

(3) The variations of the Bergman bidifferential 
 are given by equations (3.53).

The choice of variable to be kept fixed Y versus X is ultimately immaterial. However,
formulae can take on a significantly more involved form if one chooses the ‘wrong’ way of
differentiation. We are going to practice this calculus and compute the fourth-order derivatives
explicitly. This will also provide us with relevant formulae for the four-point correlators of
the planar limit of the two-matrix model.

4.1. Fourth order

To illustrate the method, we compute the fourth derivatives with respect to uK,α, uL,β,

uM,γ , uN,δ (which we will denote in shorthand by the subscripts M,N,L,K only). We
start from the expression for the third derivative

∂M∂N∂LF := FM,N,L = −
∑

res
ξ=xk

ωMωLωN

dY dX
. (4.9)

It is quite obvious from the considerations around equation (4.2) that the extra derivative is
most easily computed at X fixed:

∂KFM,N,L = −
∑

k

res
ξ=xk

(∂KωM)XωLωN

dY dX
− (M ↔ L) − (M ↔ N)

+
∑

res
ξ=xk

ωLωMωN

dY dX
d(∂KY)X

dY
. (4.10)

Using now lemma 4.2 and the variational formulae (3.53), we obtain

∂KFM,N,L =
∑

k

res
ξ=xk

ωL(ξ)ωN(ξ)

dY(ξ) dX(ξ)

(∑



res
ζ=x


ωM(ζ )ωK(ζ )
(ξ, ζ )

dY(ζ ) dX(ζ )

)
+ (M ↔ L) + (M ↔ N) (4.11)

+
∑

res
ξ=xk

ωL(ξ)ωM(ξ)ωN(ξ)

dY(ξ)2 dX(ξ)
res
ζ=ξ

ωK(ζ )
(ζ, ξ)

dX(ζ )
. (4.12)

The computation could end here, since we have successfully expressed the derivatives in terms
of residues of known differentials: however, this expression is not obviously symmetric in
the exchange of the indices, whereas it should be since it expresses the fourth derivatives of
the free energy. The expression is symmetric, but not at first sight. In the double sum, the
order of the residues is immaterial only for the non-diagonal part: for the diagonal part of
the sum, the residue with respect to ζ must be evaluated first. The non-diagonal part of the
sum is∑
k,
:

 �=k

res
ξ=xk

res
ζ=x


ωL(ξ)ωN(ξ)

dY(ξ) dX(ξ)

(ξ, ζ )

ωM(ζ )ωK(ζ )

dY(ζ ) dX(ζ )
+ (M ↔ L) + (M ↔ N), (4.13)

where the order of the residues is, as we said, immaterial because they are taken at different
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points. This term corresponds diagrammatically to

and is manifestly symmetric in K,L,M,N . The diagonal part is not manifestly symmetric,
but in fact we are going to show that it is. The diagonal part of the sum together with the last
term is made of the following residues:

res
ξ=xk

ωL(ξ)ωN(ξ)

dY(ξ) dX(ξ)
res
ζ=xk

ωM(ζ )ωK(ζ )
(ξ, ζ )

dY(ζ ) dX(ζ )
+ (M �→ N �→ L)

+ res
ξ=xk

ωL(ξ)ωM(ξ)ωN(ξ)

dY(ξ)2 dX(ξ)
res
ζ=ξ

ωK(ζ )
(ζ, ξ)

dX(ζ )
(4.14)

where we stress that the residues with respect to ζ have to be evaluated first. For instance, a
rather long computation in the local coordinate z = √

X − X(xk) gives

1

2

LMNK ′′ + LMN ′′K + LM ′′NK + L′′MNK + LMNKSB

(Y′)2
− 1

2

KLMNY′′′

(Y′)3
(4.15)

where the shorthand notation is as follows:

ωL = L(z) dz, ωK = K(z) dz, ωM = M(z) dz, ωN = N(z) dz (4.16)


(z, z′) =
(

1

(z − z′)2
+

1

6
SB(z, z′)

)
dz dz′, (4.17)

and SB(z, z) is the projective connection, and all quantities are evaluated at z = 0.

4.1.1. Four-point correlator. This is the formal expression for

R
(4)
4,0(q1, q2, q3, q4) := δ4F

δV1(q1)V1(q2)V1(q3)V1(q4)
, (4.18)

where the formal operator δ/δV1(q) is defined by

δ

δV1(q)
=

∞∑
K=1

q−K−1K
∂

∂uK,∞
. (4.19)

By summing the four indices of the above derivatives (at least formally), we obtain

R
(4)
4,0(q1, q2, q3, q4) dq1 dq2 dq3 dq4 = 


(4)
XX(ζ(q1), ζ(q2), ζ(q3), ζ(q4)), (4.20)

where ζ(q) is the solution of X(ζ ) = q on the physical sheet of the cover X : �g → CP 1 and



(4)
XX(1, 2, 3, 4) =

∑
r

res
ξ=xk


(1, ξ)
(2, ξ)
(3, ξ)

dY2(ξ) dX(ξ)
res
ζ=ξ


(ζ, ξ)

(ζ, 4)

dX(ζ )
(4.21)

+
∑

r

res
ξ=xk

∑
k

res
ζ=xk


(1, ζ )
(4, ζ )

dY(ζ ) dX(ζ )

(ζ, ξ)


(2, ξ)
(3, ξ)

dY(ξ) dX(ξ)
+ (1 ↔ 2) + (1 ↔ 3). (4.22)

Note that this kernel is symmetric in the four variables although not at first sight, but by the
same considerations as before. In a similar way one can obtain the other four-point correlator

R
(4)
0,4(p1, p2, p3, p4) := δ4F

δV2(p1)V2(p2)V2(p3)V2(p4)
, (4.23)
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where δ/δV2(p) is defined similarly as before by

δ

δV2(p)
:=

∞∑
J=1

Jp−J−1 ∂

∂vJ

. (4.24)

The derivation of the formula is completely parallel; hence we only give the final result

R
(4)
0,4(p1, p2, p3, p4) dp1 dp2 dp3 dp4 = 


(4)
YY(ξ(p1), ξ(p2), ξ(p3), ξ(p4)), (4.25)

where ξ(p) is the solution of Y(ξ) = p on the physical sheet of the cover Y : �g → CP 1 and



(4)
YY(1, 2, 3, 4) =

∑



res
ξ=y



(1, ξ)
(2, ξ)
(3, ξ)

dY(ξ) dX2(ξ)
res
ζ=ξ


(ζ, ξ)

(ζ, 4)

dY(ζ )
(4.26)

+
∑




res
ξ=y


∑
s

res
ζ=ys


(1, ζ )
(4, ζ )

dY(ζ ) dX(ζ )

(ζ, ξ)


(2, ξ)
(3, ξ)

dY(ξ) dX(ξ)
+ (1 ↔ 2) + (1 ↔ 3). (4.27)

4.2. ‘Mixed’ fourth-order derivatives

As a further example, we compute the derivatives with respect to uL, uM, vN, vK : we leave
the derivative with respect to vK last and perform it at X fixed

FLMÑK̃ = ∂K̃FLMÑ = ∂K̃

∑
res
xk

ωLωMωÑ

dY dX
(4.28)

=
∑

res
xk

(
(∂K̃ωL)XωMωÑ + ωL(∂K̃ωM)XωÑ + ωMωL(∂K̃ωÑ )Y + ωMωLd

(ωÑωK̃

dY dX

)
dY dX

−ωLωMωÑ

dY dX
d(∂K̃Y)X

dY

)
(4.29)

=
∑

res
xk

[
(∂K̃ωL)XωMωÑ + ωL(∂K̃ωM)XωÑ + ωMωL(∂K̃ωÑ )Y

dY dX

+
ωMωL

dY dX
d
(ωÑωK̃

dY dX

)
− ωLωMωÑ

dY2 dX
d
(ωK̃

dX

) ]
(4.30)

=
∑

res
ζ=xk

ωM(ζ )ωL(ζ )

dY(ζ ) dX(ζ )

∑
res
ξ=y



(ξ, ζ )
ωÑ (ξ)ωK̃(ξ)

dY(ξ) dX(ξ)
(4.31)

−
∑

res
ζ=xk

(
ωM(ζ )ωÑ (ζ )

dY(ζ ) dX(ζ )

∑
res
ξ=x


ωL(ξ)ωK̃(ξ)
(ξ, ζ )

dY(ξ) dX(ξ)
+ (L ↔ M)

)
(4.32)

+
∑

res
ζ=xk

[
ωM(ζ )ωL(ζ )

dY(ζ ) dX(ζ )
d

(
ωÑ(ζ )ωK̃(ζ )

dY(ζ ) dX(ζ )

)
− ωL(ζ )ωM(ζ )ωÑ (ζ )

dY(ζ )2 dX(ζ )
d

(
ωK̃(ζ )

dX(ζ )

)]
.

(4.33)

Note that in order to compute effectively the derivative of ωK̃ at X-fixed, we have used
lemma 4.1. Once more one can check that the resulting expression is symmetric in Ñ ↔ K̃

and M ↔ L. The only terms which do not have this symmetry at first sight are the diagonal
part of the double sum over xk together with the last term:

FLMÑK̃ =
∑

res
ζ=xk

∑
res
ξ=y


ωM(ζ )ωL(ζ )

dY(ζ ) dX(ζ )

(ξ, ζ )

ωÑ (ξ)ωK̃(ξ)

dY(ξ) dX(ξ)
(4.34)
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−
∑
k,
:

 �=k

res
ζ=x


res
ξ=xk

(
ωM(ζ )ωÑ (ζ )

dY(ζ ) dX(ζ )

(ξ, ζ )

ωL(ξ)ωK̃(ξ)

dY(ξ) dX(ξ)
+ (L ↔ M)

)
(4.35)

+
∑

res
ζ=xk

ωM(ζ )ωL(ζ )

dY(ζ ) dX(ζ )
d

(
ωÑ(ζ )ωK̃(ζ )

dY(ζ ) dX(ζ )

)
(4.36)

−
∑

k

res
ζ=xk

(
res
ξ=xk

ωM(ζ )ωÑ (ζ )

dY(ζ ) dX(ζ )

(ξ, ζ )

ωL(ξ)ωK̃(ξ)

dY(ξ) dX(ξ)

+
ωL(ζ )ωM(ζ )ωÑ (ζ )

dY(ζ )2 dX(ζ )
d

(
ωK̃(ζ )

dX(ζ )

))
. (4.37)

The same considerations about symmetry done previously apply to the sum on line (4.37) as
well.

4.2.1. Four-point correlator. Using the above computation, we can compute the following
four-point correlator:

R
(4)
2,2(q1, q2, p1, p2) := δ4F

δV1(q1)V1(q2)V2(p1)V2(p2)
. (4.38)

Performing the multiple summation, we find

R
(4)
2,2(q1, q2, p1, p2) dq1 dq2 dp1 dp2 = 


(4)
XY(ζ(q1), ζ(q2), ξ(p1), ξ(p2)), (4.39)

where ξ(p) is the solution on the physical sheet of Y(ξ) = p and



(4)
XY(1, 2, 1̃, 2̃) :=

∑
res
ζ=xk

∑
res
ξ=y



(1, ζ )
(2, ζ )

dY(ζ ) dX(ζ )

(ζ, ξ)


(̃1, ξ)
(̃2, ξ)

dY(ξ) dX(ξ)
(4.40)

−
∑
k,r
k �=r

res
ζ=xr

res
ξ=xk


(1, ζ )
(̃1, ζ )

dY(ζ ) dX(ζ )

(ζ, ξ)


(2, ξ)
(̃2, ξ)

dY(ξ) dX(ξ)
− (1 ↔ 2) (4.41)

+
∑

res
ζ=xk


(1, ζ )
(2, ζ )

dY(ζ ) dX(ζ )
dζ


(̃1, ζ )
(̃2, ζ )

dY(ζ ) dX(ζ )
(4.42)

−
∑

res
ζ=xk

(
res
ξ=xk


(1, ζ )
(̃1, ζ )

dY(ζ ) dX(ζ )

(ζ, ξ)


(2, ξ)
(̃2, ξ)

dY(ξ) dX(ξ)

+

(1, ζ )
(2, ζ )
(̃1, ζ )

dY2(ζ ) dX(ζ )
dζ

(

(̃2, ζ )

dX(ζ )

))
. (4.43)

Repeating the derivation from the beginning, one can realize that there is no need of any other
kernel for

R
(4)
3,1(q1, q2, q3, p2) := δ4F

δV1(q1)V1(q2)V1(p3)V2(p1)
, (4.44)

which is given by

R
(4)
3,1(q1, q2, q3, p1) dq1dq2 dq3 dp1 = 


(4)
XX(ζ(q1), ζ(q2), ζ(q3), ξ(p1)). (4.45)



Two-matrix model with semiclassical potentials and extended Whitham hierarchy 8845

4.2.2. Summary of all fourth derivatives. These three kernels are sufficient for us to write
all fourth derivatives compactly as some new residue formulae (note: the order in which the
integral operators appear is to mean that they are applied to the variable that appear in the
corresponding position in the kernel)

∂uK
∂uJ

∂vL
∂vM

F = UKUJVLVM

(4)
XY (4.46)

∂uK
∂vJ

∂2
t F = UKT T VJ 


(4)
XY (4.47)

∂uK
∂1∂2∂3F = UK

∫
∂1

∫
∂2

∫
∂3



(4)
XX (4.48)

∂vJ
∂1∂2∂3F = VJ

∫
∂1

∫
∂2

∫
∂3



(4)
YY (4.49)

∂1∂2∂3∂4F =
∫

∂1

∫
∂2

∫
∂3

∫
∂4



(4)
YY =

∫
∂1

∫
∂2

∫
∂3

∫
∂4



(4)
XX, (4.50)

where the symbols ∂j here mean derivatives with respect to variables not included in the
previous items of the list.

4.3. Higher-order correlators

The computation of any derivative of any order is just a matter of application of the ‘rules
of calculus’ outlined previously; in this fashion one could obtain residue formulae for any
derivative and possibly develop some diagrammatic rules to help in the computation. We leave
this exercise to the reader who may need it for his/her application to a specific problem. The
formal ‘puncture’ operators

dX(ξ)
δ

δV1(X(ξ))
, dY(ξ)

δ

δV2(Y(ξ))
(4.51)

act as follows on each term:

dX(1)
δ
(2, 3)

δV1(X(1))
=
∑

res
ξ=xk


(1, ξ)
(2, ξ)
(3, ξ)

dY(ξ) dX(ξ)
(4.52)

dX(1)
δ

δV1(X(1))

(
1

dY(2)

)
= 1

dY2(2)
d2

(

(1, 2)

dX(2)

)
= 1

dY2(2)
res
ξ=2


(2, ξ)
(ξ, 1)

dX(ξ)
(4.53)

dY(1)
δ
(2, 3)

δV2(Y(1))
= −

∑
res
ξ=yk


(1, ξ)
(2, ξ)
(3, ξ)

dY(ξ) dX(ξ)
(4.54)

dY(1)
δ

δV2(Y(1))

(
1

dX(2)

)
= − 1

dY2(2)
d2

(

(1, 2)

dY(2)

)
= − 1

dX2(2)
res
ξ=2


(2, ξ)
(ξ, 1)

dY(ξ)

(4.55)

Combining these ‘rules’ it is easy to obtain any correlator: the resulting expression will be
symmetric in the exchange of the variables, although to recognize this some careful analysis
of the residues is required.

4.4. The equilibrium correlators

The derivation of the multiple derivatives of the equilibrium free energy G follows the same
lines and the results are the same formulae with 
 replaced by 
̃ (clearly there are no
derivatives with respect to the filling fractions εj which are now dependent functions). In
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general, the rules of calculus for G are the same as the rule of calculus for F with all the
instances of the Bergman kernel replaced by the dual kernel 
̃.

Acknowledgment

This work was supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC), grant no 261229-03.

Appendix A. Explicit form of the regularized integrals

In this section we provide explicit formulae for the regularized integrals used in the definition
of the free energy and the τ function of the previous section.

The main tools are the following properties which were used in the proof of the derivatives
of the free energy:

Y dX =
∑
α=0

d1,α∑
K=0

uK,αUK,α(
) +
∑
α=0

d2,α∑
J=0

vJ,αVJ,α(
)

+ tT (
) +
g∑

j=1

εjEj (
) −
∑
ζ∈DY

res
ζ

XY
 (A.1)

X dY = −
∑
α=0

d1,α∑
K=0

uK,αUK,α(
) −
∑
α=0

d2,α∑
J=0

vJ,αVJ,α(
)

− tT (
) −
g∑

j=1

εjEj (
) −
∑
ζ∈DX

res
ζ

XY
. (A.2)

Let us compute −−∫∞X

qα
Y dX according to the original definition of regularization: since the

operator −−∫∞X

qα
commutes with the integral operators/regularizations in (A.1), we obtain

immediately

−−
∫ ∞X

qα

Y dX =
∑
α=0

d1,α∑
K=0

uK,αUK,α

(∫ ∞X

qα




)
+
∑
α=0

d2,α∑
J=0

vJ,αVJ,α

(∫ ∞X

qα




)

+ tT
(∫ ∞X

qα




)
+

g∑
j=1

εjEj

(∫ ∞X

qα




)
−
∑
ζ∈DY

res
ζ

XY
∫ ∞X

qα


. (A.3)

The differential
∫ qα

∞X

 is the unique normalized differential of the third kind with simple poles

at qα,∞X and residues, respectively, +1,−1. To simplify formulae let us define for any two
points ξ, η the following function:

�ξ,η(ζ ) := exp

[∫ ζ

ζ0

∫ η

ξ




]
,

∫ η

ξ


 = d�ξ,η

�ξ,η

. (A.4)

This is a multivalued function around the b-cycles; on the simply-connected domain obtained
by dissection of our surface, �ξ,η has a simple pole at ξ and a simple zero at η. It is defined
up to a multiplicative constant (depending on the base point for the outer integration), which
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however will not affect our result. With this definition we have (q0 := ∞X, p0 := ∞Y)

∂u0,α
F = −−

∫ ∞X

qα

Y dX = −
∑
α̃=0

res
qα̃

V1,̃α(X)
d�

�
+
∑
β=0

res
qβ

(V2,β(Y) − XY)
d�

�

+
∑

α̃ �={α,0}
u0,̃α ln

(
γ∞X

�(qα̃)

)
+ u0,α ln

(
γ∞X

γqα

)

+
∑
β=1

v0,β ln

(
�(pβ)

�(∞Y)

)
+ t ln

(
γ∞X

�(∞Y)

)
+

g∑
j=1

εj

2iπ

∮
bj

d�

�
(A.5)

where we have set � := �qα,∞X and

ln γ∞X := lim
ε→∞X

ln
(
�qα,∞X X

)
ln γqα

:= lim
ε→qα

ln
(
�qα,∞X(X − Qα)

)
. (A.6)

The formulae for the derivatives with respect to v0,α are obtained by interchanging all the roles
of X,∞X, qα with Y,∞Y, pα .

Finally the formula for the t-derivative

∂tF = −−
∫ ∞X

∞Y

Y dX −
∑

α

v0,α = −
∑
α̃=0

res
qα̃

V1,̃α(X)
d�

�
+
∑
β=0

res
qβ

(V2,β(Y) − XY)
d�

�

+
∑
α̃=1

u0,̃α ln

(
γ∞X

�(qα̃)

)
+
∑
β=1

v0,β ln

(
�(pβ)

γ∞Y

)
+ t ln

(
γ∞X

γ∞Y

)
+

g∑
j=1

εj

2iπ

∮
bj

d�

�
+ t

(A.7)

where, this time,

� := �∞Y,∞X ln(γ∞X) := lim
ε→∞X

ln(�X) ln(γ∞Y) := lim
ε→∞Y

ln

(
�

Y

)
. (A.8)

The extra ‘
∑

α v0,α’ which cancels with the same term in the expression for µ is due to a
careful analysis of the regularization prescription for the following term in the computation:

res∞Y
XY

∫ ∞X

∞Y


 = lim
ε→∞Y

(∫ ∞X

ε

res∞Y
XY
 + X(ε)Y(ε)

)
= −t −

∑
α

v0,α + −−
∫ ∞X

∞Y

res∞Y
XY
.

(A.9)

Note that, in all these formulae, the b-periods of d�
�

are the Abel map of the two poles of
this differential.

Appendix B. Example: one cut case (genus zero) and conformal maps

The formulae for the derivatives simplify drastically in case the curve �g is a rational curve.
In this case, introducing a global coordinate λ (as explained in [1, 2]) with a zero at ∞Y and a
pole at ∞X and suitably normalized one can always write the two functions X, Y as

X = γ λ +
d2,∞∑
K=0

AK,∞λ−K +
∑

α

d2,α∑
K=0

AK,α(λ − λα̃)−K−1 +
s∑

j=1

Fj

λ − λj,Y

Y = γ

λ
+

d1,∞∑
J=0

Bj,∞λj +
∑

α

d1,α∑
J=0

BJ,α(λ − λα)−J−1 +
r∑

j=1

Gj

λ − λj,X

(B.1)

Qα := X(λα), Pα̃ := Y(λα̃). (B.2)
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The parameters γ,Aj , Fj and Bj ,Gj , j = 1, . . . , s are not independent but are constrained
by the following set of linear equations (in γ,Aj , Bj , Fj ,Gj ):

X′(λj,X) = 0, j = 1, . . . , r, Y′(λj,Y ) = 0, j = 1, . . . , s. (B.3)

As we have already mentioned, the equivalent of the Bergman kernel is simply


(λ,µ) = dλ dµ

(λ − µ)2
. (B.4)

This is the kernel of the derivative followed by projection to the principal part. For example,
the differentials ωK,∞

ωK,∞(λ) = − res
µ=∞

XK(µ)

K

(λ,µ) = 1

K
(XK)+ dλ, (B.5)

where the ± subscripts mean the polynomial or the Laurent part of the expression enclosed
in the brackets. Similar completely explicit formulae for all other differentials in the lists
(3.13)–(3.15) are left to the reader.

The coordinates are given by the usual formulae (2.3). The free energy can be written
in a quite explicit form using the following simplifications due to the existence of a global
coordinate λ(λ0 := ∞, λ̃0 := 0):

∂u0,α
F = −

∑
β�0

res
λ=λβ

V1(X)
dλ

λ − λα

+
∑
β̃�0

res
λ=λβ̃

(V2(Y) − XY)
dλ

λ − λα

+
∑

β �={α,0}
u0,β ln(γ (λβ − λα)) + u0,α ln

(
γ

X′(λα)

)

+
∑
β̃�0

v0,β ln

(
λα

λα − λβ̃

)
+ t ln (λαγ ) (B.6)

∂v0,̃α
F = −

∑
β̃�0

res
λ=λβ̃

V2,̃β (Y)
λα̃ dλ

λ(λα̃ − λ)
+
∑
β�0

res
λ=λβ

(V1(X) − XY)
λα̃ dλ

λ(λα̃ − λ)

−
∑

β̃ �={̃α,0}
v0,̃β ln

(
(λα̃)2

(λβ̃ − λα̃)γ

)
− v0,̃α ln

(
(λα̃)2Y′(λα̃)

γ

)

+
∑
β�0

u0,β ln

(
λβ

λβ − λα̃

)
+ t ln

(
γ

λα̃

)
(B.7)

since �qα,∞X = 1
λ−λα

and �pα̃,∞Y = λ
λ−λα̃

. Moreover, using this time �∞X,∞Y = λ and
formula (A.7)

∂tF =
∑
β�0

res
λ=λβ

V1,β(X)
dλ

λ
−
∑
β̃�0

res
λ=λβ̃

(V2,̃β (Y) − XY)
dλ

λ

+
∑
β=1

u0,β ln(λβγ ) −
∑
β̃=1

v0,β ln

(
λβ

γ

)
+ t ln(γ 2) + t. (B.8)

By computing the other residues, one can get explicit formulae for the free energy in terms of
the uniformization (B.1) and using theorem 3.5.
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Denoting as before by xk and y
 the critical points of the functions X and Y,9 respectively,
we have as example of fourth-point correlators

− R
(4)
4,0(µ1, µ2, µ3, µ4)X′(µ1)X′(µ2)X′(µ2)X′(µ4) =

∑
k,r
k �=r

(µ1 − xk)
−2(µ2 − xk)

−2

Y′(xk)X′′(xk)

× 1

(xk − xr)2

(µ3 − xr)
−2(µ4 − xr)

−2

Y′(xr)X′′(xr)
+ (µ1 ↔ µ3) + (µ1 ↔ µ4) (B.9)

+
∑

k

1

6Y′′′(X′′)4

[
(2Y′(X′′′)2 + 2Y′′X′′X′′′ − 3(X′′)2Y′′′ − 3X(iv)X′′Y′)

(µ1 − xk)2(µ2 − xk)2(µ3 − xk)2(µ4 − xk)2
(B.10)

+
18(X′′)2Y′((µ1 − xk)

−2 + cyc)

(µ1 − xk)2(µ2 − xk)2(µ3 − xk)2(µ4 − xk)2

− 2X′′′X′′Y′((µ1 − xk)
−1 + cyc)

(µ1 − xk)2(µ2 − xk)2(µ3 − xk)2(µ4 − xk)2

]∣∣∣∣∣
λ=xk

. (B.11)

Here the expression looks more complicated than necessary because the derivatives are taken
with respect to λ.

Higher-order correlators are of increasingly cumbersome expression, but in principle they
are easily computed using the general calculus outlined in the main text.

B.1. Conformal maps

A further simplification of the formulae arises in case the functions Y and X above describe
the Riemann uniformization and its Schwartz reflected of a simply-connected domain D in
the X plane. We recall that all our formulae can be easily adapted to the description of simply
and multiply connected domains (the number of connected components being the genus of the
curve) by taking the curve �g as an M-curve in the sense of Harnack [20]: namely, a curve
with an anti-holomorphic involution ϕ : �g → �g having g + 1 contours of fixed points and
such that

X(ζ ) = Y(ϕ(ζ )). (B.12)

In genus zero and with the normalization used in the previous paragraph for the uniformizing
coordinate, the anti-holomorphic involution would be λ → 1

λ
. The two functions Y and X

then satisfy

X(λ) = Y
(

1

λ

)
. (B.13)

Since X(λ) is now the uniformizing map of a simply-connected domain D, it follows from the
general properties of such maps that X maps biholomorphically the outer region C \ D to the
outside of the unit disk in the λ-plane. This means that the zeros of dX all lie inside the unit
disk and hence the zeros of dY (which is the Schwartz function of the domain) all lie outside.

The free energy of the two-matrix model under this reduction vK = uK , reduces to the
tau function of Jordan curves studied in [24, 25, 28, 31–33] as explained in [1, 2]

F = 1

4π2

∫
D

∫
D

d2X d2X̃ ln

∣∣∣∣ 1

X
− 1

X̃

∣∣∣∣ . (B.14)

9 Note that the set of points {λj,X} is a subset of the {xk} and similarly for the {λj,Y } and {yk}.
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The coordinates uK are then identified with the so-called exterior harmonic moments of the
region

t = 1

2iπ

∫
D

dX ∧ dX = t (B.15)

uk = 1

2iπ

∫
C\D

X−K dX ∧ dX, (B.16)

and can be transformed in contour integrals along the boundary of the region D using Green’s
theorem (for K � 2 the definition of the exterior harmonic moments requires actually
a regularization which is equivalent to replacing the surface integral by its corresponding
boundary integral).

The free energy is in this case a real analytic function of the harmonic moments
F = (uK, uK, t) and the previous formulae for the fourth derivatives10 can be translated
into contour integral-formulae which in turn could be written in terms of Green’s function of
the Laplacian for the given region. It is also clear that effective formulae can be obtained for
the multiply connected domains which correspond to higher genus M-curves considered in
this context.

Appendix C. An extended Whitham moduli space

The moduli space considered in this paper could be easily extended in the spirit of [26] by
considering instead of functions X, Y some normalized second-kind differentials dX, dY: this
generalization has probably no relevance in the context of matrix models, nevertheless we
sketch the main extra features. The practical difference is that now we may still think of
multivalued functions X, Y with the properties

X(ζ + bj ) = X(ζ ) + Aj (C.1)

Y(ζ + bj ) = Y(ζ ) + Bj , (C.2)

whereas the functions have no multivaluedness along the a-cycles. The rest of the description
of the moduli space is exactly as in section 2. Note that this moduli space is ‘larger’ than
the moduli space of [26] because we are also considering the position of some zeros of our
primary differentials.

After dissection of the surface �g along the chosen cycles {aj , bj }j=1,...,g and along
the fixed contours between the non-hard-edge poles, we obtain a simply-connected domain
over which we will consider the functions X = ∫

dX, Y = ∫
dY. In this domain the same

asymptotics as in (2.3) are valid (where the ‘potentials’ are discontinuous across the cuts
along which we have dissected the surface). The free energy (we should probably call it rather
the ‘tau’ function) would be defined by the same formulae (3.1) except for the fact that the
εj -derivatives should be replaced by the formulae below and we should consider the derivatives
with respect to the extra moduli Aj , Bj

Aj := ∂Aj
F = 1

2iπ

(∮
aj

YX dY − 1

2
εjBj

)
(C.3)

Bj := ∂Bj
F = 1

2iπ

(∮
aj

YX dX +
1

2
εjAj

)
(C.4)

10 The third derivatives were computed in [33].
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�j := ∂εj
F = 1

2iπ

(
1

2
AjBj − Bj X(ζ ) +

∫ ζ+bj

ζ

Y dX
)

= − 1

2iπ

(
1

2
AjBj − Aj Y(ζ ) +

∫ ζ+bj

ζ

X dY
)

. (C.5)

The equivalence of the two last lines is given by integration by parts. Also, the last integrals
may seem to depend on the base point of integration: in fact they do not as one may check by
computing the differential at ζ .

Besides the differentials considered in (3.13, 3.14 and 3.15), one also has(
∂Aj

X
)

Y dY = 1

2iπ

∮
aj

Y
 =: −Aj (
)
(
∂Bj

Y
)

X dX = 1

2iπ

∮
aj

X
 =: Bj (
). (C.6)

These formulae are obtained by noticing that
(
∂Bj

Y
)

X dX is a holomorphic multivalued
differential with monodromy only around the corresponding b-cycle(

∂Bj
Y
)

X dX
∣∣ζ+bk

ζ
= −δjk dX(ζ ). (C.7)

The integral formula has the same properties and hence we have the equality. The reasoning
for
(
∂Aj

X
)

Y dY is symmetric. Note that—using the thermodynamic identity—we have(
∂Bj

X
)

Y dY = − 1

2iπ

∮
aj

X
. (C.8)

The considerations to prove the compatibility of the above equations are similar to the previous
case with one notable exception we want to bring to the attention of the reader; in the
computations of the second derivatives one is lead to considering integrals of the form∮

aj

X
∮

ak

Y
,

∮
aj

X
∮

ak

X
,

∮
aj

Y
∮

ak

Y
. (C.9)

These integrals do not depend on the order only if j �= k: in fact we have∮
aj

X
∮

aj

Y
 =
∮

aj

Y
∮

aj

X
 + 2iπ
∮

aj

X dY∮
aj

X
∮

ak

X
 =
∮

aj

X
∮

aj

X
 + 2iπ
∮

aj

X dX =
∮

aj

X
∮

aj

X
 (C.10)∮
aj

Y
∮

aj

Y
 =
∮

aj

Y
∮

aj

Y
 + 2iπ
∮

aj

Y dY =
∮

aj

Y
∮

aj

Y
.

Another kind of integrals that one encounters are of the type∮
aj

Y
∮

bk


 = 2iπ
∮

aj

Yωk. (C.11)

Here one has to use the following rule for exchanging the order of the integrals: suppose that
a specific choice of the homology representatives of aj and bj intersect at the point ζ0, then∮

ζ∈aj

F (ζ )

∮
ξ∈bk


(ζ, ξ) =
∮

ζ∈aj

(F (ζ ) − F(ζ0))

∮
ξ∈bk


(ζ, ξ) + F(ζ0)

∮
ζ∈aj

∮
ξ∈bk


(ζ, ξ)

(C.12)

=
∮

ξ∈bk

∮
ζ∈aj

(F (ζ ) − F(ζ0))
(ζ, ξ) − 2iπδjkF (ζ0)

= 2iπδjkF (ζ0) +
∮

ξ∈bk

∮
ζ∈aj

F (ζ )
(ζ, ξ). (C.13)



8852 M Bertola

Following similar arguments used in section 3, one can prove that

2F = 2F0 +
g∑

j=1

(AjAj + BjBj ), (C.14)

where F0 is given by the same formula (3.25) (with the new meaning of �j , though). The
proof rests on the identity

Y dX =
∑
α=0

d1,α∑
K=0

uK,αUK,α(
) +
∑
α=0

d2,α∑
J=0

vJ,αVJ,α(
) (C.15)

+ tT (
) +
g∑

j=1

(
εjEj (
) +

1

2iπ

∮
aj

X
 +
1

2iπ

∮
aj

Y


)
+
∑
ζ∈DY

res
ζ

XY
, (C.16)

which is proved as before by matching the singular behaviours of both sides at all possible
singularities and by checking that both sides have the same multivaluedness around the a- and
b-cycles and the same periods.

C.1. Higher-order derivatives

In order to write compactly the second derivatives, let us denote by ∂ any derivative with
respect to one of the parameters uK,α,Qα,Xj , vJ,α, Pα, Yj . Beside the second derivatives
already computed, the new ones are given by the formulae

∂Aj
∂Ak

F = AjAk
, ∂Bj
∂Bk

F = BjBk


∂Aj
∂Bk

F = AjBk
 +
δjk

4iπ
εk ∂Aj

∂εk
F = AjEk
 +

δjk

4iπ
Bj

∂Bj
∂εk

F = BjEk
 − δjk

4iπ
Ak ∂Bj

∂F = Bj

∫
∂


, ∂Aj
∂F = Aj

∫
∂


.

(C.17)

We remark that the order of the integral operators acting on 
 is relevant because 
 is singular
on the diagonal: for instance,

AjBk
 = BkAj
 − δjk

2iπ
εk. (C.18)

In order to compute all higher derivatives and loop correlators, we need to specify the relevant
additional Rauch variational formulae: besides those considered in (3.53), we need those
related to the extra moduli(

∂Aj


)

X(1, 2) = − 1

2iπ

∮
ξ∈aj

(
Y(ξ)


(3)
X (1, 2, ξ) − 
(1, ξ)
(2, ξ)

dX(ξ)

)
(
∂Bj



)

X(1, 2) = 1

2iπ

∮
ξ∈aj

X(ξ)

(3)
X (1, 2, ξ)

(
∂Bj



)

Y(1, 2) = 1

2iπ

∮
ξ∈aj

(
X(ξ)


(3)
Y (1, 2, ξ) +


(1, ξ)
(2, ξ)

dY(ξ)

)
(
∂Aj



)

Y(1, 2) = − 1

2iπ

∮
ξ∈aj

Y(ξ)

(3)
Y (1, 2, ξ).

(C.19)

We briefly justify these formulae. Suppose ω is any of our differentials and consider the
function ω/dX (or symmetric argument for Y). This function has poles at the zeros of dX
and possibly constant monodromy around a b-cycle. Thinking of it as a function of X, the
monodromy condition reads (c is 0 or 1 depending on the case chosen, but the argument is
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unaffected)
ω

dX
(X + Aj) − ω

dX
(X) = c. (C.20)

Taking the derivative with respect to Aj at X-fixed, we have(
∂Aj

ω
)

X

∣∣ζ+bj

ζ
= d

( ω

dX

)
. (C.21)

Considering with some care, the singularities at the zeros of dX and this multivaluedness, one
gets(
∂Aj

ω
)
(ζ ) = −

∑
res
ξ=xk

ω(ξ)
(ξ, ζ )Aj (
)(ξ)

dX(ξ) dY(ξ)
+

1

2iπ

∮
aj


(ζ, ξ)ω(ξ)

dX(ξ)
. (C.22)

This gives the previous extended Rauch formulae.
Using these expressions for the variation of the Bergman kernel, one can obtain all third

derivatives. Besides those already considered in (3.56, 3.57 and 3.58), we also find

∂Aj
∂Ak

∂A

F = AjAkA



(3)
Y ; ∂Bj

∂Bk
∂B


F = BjBkB


(3)
X

∂Aj
∂Ak

∂F =
∫

∂

AjAk

(3)
Y ; ∂Bj

∂Bk
∂F =

∫
∂

BjBk

(3)
X

∂Aj
∂Bk

∂ε

F = AjBkE



(3)
X +

1

2iπ

∮
aj

Bk(
)Ej (
)

dX
− δjkδkl

4iπ

∂Aj
∂Bk

∂vJ,α
F = AjBkVJ,α


(3)
Y +

1

2iπ

∮
ak

Aj (
)VJ,α(
)

dY

∂Aj
∂Bk

∂uK,α
F = AjBkUK,α


(3)
X +

1

2iπ

∮
aj

Bk(
)UK,α(
)

dX

∂Aj
∂uK,α

∂vJ,β
F = AjUK,αVJ,β


(3)
Y ; ∂Bj

∂uK,α
∂vJ,β

F = BjUK,αVJ,β

(3)
X

∂Aj
∂uK,α

∂uJ,β
F = AjUK,αUJ,β


(3)
X +

1

2iπ

∮
aj

UK,α(
)UJ,β(
)

dX

∂Bj
∂vK,α

∂vJ,β
F = BjVK,αVJ,β


(3)
Y +

1

2iπ

∮
aj

VK,α(
)VJ,β(
)

dY

∂Aj
∂vK,α

∂vJ,β
F = AjVK,αVJ,β


(3)
Y ; ∂Bj

∂uK,α
∂uJ,β

F = BjUK,αUJ,β

(3)
X

∂Aj
∂t∂F =

∫
∂

T Aj

(3)
Y ; ∂Bj

∂t ∂F =
∫

∂

T Bj

(3)
X .

(C.23)

C.1.1. Order 4 and higher. It is clear that the formulae become rather long due to many-case
distinctions. However, the reader should be able to compute any derivative of order 4 or
higher by using the same rules of calculus outlined in the main text, with the additional Rauch
formulae (C.19).

Appendix D. General definition of regularized integrals

Let ω be a meromorphic differential with poles at the points ζρ, ρ = 0, . . . . Let zρ be chosen
and fixed local parameters at ζρ . Let ωj be the Abelian differentials of the first kind normalized
with respect to the a-cycles of a given choice of basis {aj , bj } in the homology of the curve.
Then we have

ω =
∑
ρ�0

∑
K�1

1

K
res
ζρ

(zρ)
K res

ζρ

(zρ)
−K
 +

∑
ρ�1

(
res
ζρ

ω
) ∫ ζρ

ζ0


 +
g∑

j=1

(∮
aj

ω

)
ωj . (D.1)
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The regularized integral from ξ to η is defined for a homology class of contours in the
punctured surface: in general, one has to dissect the surface along the a, b-cycles and along
a set of mutually non-intersecting segments joining the poles of ω in such a way as to have
a simply-connected domain. Choosing an arbitrary path within this simply-connected region
and joining the two chosen points we have (supposing that both ξ, η are poles of ω)

−−
∫ η

ξ

ω =
∑
ρ�0

∑
K�1

1

K
res
ζρ

(zρ)
K res

ζρ

(zρ)
−K d�

�
+
∑
ρ�0

ζρ �∈{ξ,η}

(
res
ζρ

ω
)

ln

(
�(ζρ)

γξ

)

+
(

res
η

ω
)

ln

(
γη

γξ

)
+

g∑
j=1

(∮
aj

ω

)∮
bj

d�

�
(D.2)

� := exp

(∫ ∫ η

ξ




)
:

d�

�
:=
∫ η

ξ


 γξ := lim
ε→ξ

ln

(
�(ε)

zξ (ε)

)
(D.3)

γη := lim
ε→η

ln(�(ε)zη(ε)). (D.4)

Some remarks are in order: the function ln(�) is defined as any antiderivative of the normalized
third kind differential

∫ η

ξ

, which has residue −1 at ξ and residue +1 at η. Hence � has a

simple zero at ξ and a simple pole at η (in the simply-connected domain). Also, � is defined
up to a multiplicative constant depending on the base point of integration: the final formula
for the regularized integral does not depend on this constant. � can be written explicitly in
terms of a theta function and the b-periods of d�

�
are the difference of the Abel map between

ξ and η.
In the more general situation of the extended moduli space studied in appendix C, we had

also some multivaluedness of the type

ω(ζ + bj ) − ω(ζ ) = dHj(ζ ), (D.5)

where dHj(ζ ), j = 1, . . . , g, are meromorphic differential of the second kind with vanishing
a-cycles. The formula for a regularized integral is easily adapted: the main observation is that
(D.1) now needs on the rhs, the following extra term:

ω = (D.1) +
1

2iπ

g∑
j=1

∮
aj

Hj
 (D.6)

and consequently the formula for the regularized integral is

−−
∫ η

ξ

ω = (D.2) +
1

2iπ

g∑
j=1

∮
aj

Hj

d�

�
. (D.7)
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